summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRĂ©mi Verschelde <remi@verschelde.fr>2021-07-13 20:41:09 +0200
committerGitHub <noreply@github.com>2021-07-13 20:41:09 +0200
commitbc6ea717718bfbc94065462e9cc3f560442fd0c3 (patch)
treea1bbcb6722500d27a392c6139761f1fd8f13a315
parent7bc52e56c093342255c389fcc652eda2ced40b39 (diff)
parentcf1ddfdb90c33564e6c7b240dc75ab4c04aa99b7 (diff)
Merge pull request #50063 from nekomatata/more-accurate-move-and-slide
Make move_and_slide collision detection more accurate
-rw-r--r--scene/2d/physics_body_2d.cpp41
-rw-r--r--scene/3d/physics_body_3d.cpp42
-rw-r--r--servers/physics_2d/space_2d_sw.cpp63
-rw-r--r--servers/physics_3d/space_3d_sw.cpp77
4 files changed, 154 insertions, 69 deletions
diff --git a/scene/2d/physics_body_2d.cpp b/scene/2d/physics_body_2d.cpp
index be619ed60d..80aa99bf5e 100644
--- a/scene/2d/physics_body_2d.cpp
+++ b/scene/2d/physics_body_2d.cpp
@@ -86,11 +86,11 @@ bool PhysicsBody2D::move_and_collide(const Vector2 &p_motion, bool p_infinite_in
// Restore direction of motion to be along original motion,
// in order to avoid sliding due to recovery,
// but only if collision depth is low enough to avoid tunneling.
- real_t motion_length = p_motion.length();
- if (motion_length > CMP_EPSILON) {
+ if (p_cancel_sliding) {
+ real_t motion_length = p_motion.length();
real_t precision = 0.001;
- if (colliding && p_cancel_sliding) {
+ if (colliding) {
// Can't just use margin as a threshold because collision depth is calculated on unsafe motion,
// so even in normal resting cases the depth can be a bit more than the margin.
precision += motion_length * (r_result.collision_unsafe_fraction - r_result.collision_safe_fraction);
@@ -101,16 +101,21 @@ bool PhysicsBody2D::move_and_collide(const Vector2 &p_motion, bool p_infinite_in
}
if (p_cancel_sliding) {
+ // When motion is null, recovery is the resulting motion.
+ Vector2 motion_normal;
+ if (motion_length > CMP_EPSILON) {
+ motion_normal = p_motion / motion_length;
+ }
+
// Check depth of recovery.
- Vector2 motion_normal = p_motion / motion_length;
- real_t dot = r_result.motion.dot(motion_normal);
- Vector2 recovery = r_result.motion - motion_normal * dot;
+ real_t projected_length = r_result.motion.dot(motion_normal);
+ Vector2 recovery = r_result.motion - motion_normal * projected_length;
real_t recovery_length = recovery.length();
// Fixes cases where canceling slide causes the motion to go too deep into the ground,
- // Becauses we're only taking rest information into account and not general recovery.
+ // because we're only taking rest information into account and not general recovery.
if (recovery_length < (real_t)p_margin + precision) {
// Apply adjustment to motion.
- r_result.motion = motion_normal * dot;
+ r_result.motion = motion_normal * projected_length;
r_result.remainder = p_motion - r_result.motion;
}
}
@@ -978,8 +983,9 @@ void CharacterBody2D::move_and_slide() {
floor_normal = Vector2();
floor_velocity = Vector2();
- // No sliding on first attempt to keep floor motion stable when possible.
- bool sliding_enabled = false;
+ // No sliding on first attempt to keep floor motion stable when possible,
+ // when stop on slope is enabled.
+ bool sliding_enabled = !stop_on_slope;
for (int iteration = 0; iteration < max_slides; ++iteration) {
PhysicsServer2D::MotionResult result;
bool found_collision = false;
@@ -1018,7 +1024,11 @@ void CharacterBody2D::move_and_slide() {
if (stop_on_slope) {
if ((body_velocity_normal + up_direction).length() < 0.01) {
Transform2D gt = get_global_transform();
- gt.elements[2] -= result.motion.slide(up_direction);
+ if (result.motion.length() > margin) {
+ gt.elements[2] -= result.motion.slide(up_direction);
+ } else {
+ gt.elements[2] -= result.motion;
+ }
set_global_transform(gt);
linear_velocity = Vector2();
return;
@@ -1054,7 +1064,7 @@ void CharacterBody2D::move_and_slide() {
// Apply snap.
Transform2D gt = get_global_transform();
PhysicsServer2D::MotionResult result;
- if (move_and_collide(snap, infinite_inertia, result, margin, false, true)) {
+ if (move_and_collide(snap, infinite_inertia, result, margin, false, true, false)) {
bool apply = true;
if (up_direction != Vector2()) {
if (Math::acos(result.collision_normal.dot(up_direction)) <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) {
@@ -1065,9 +1075,12 @@ void CharacterBody2D::move_and_slide() {
if (stop_on_slope) {
// move and collide may stray the object a bit because of pre un-stucking,
// so only ensure that motion happens on floor direction in this case.
- result.motion = up_direction * up_direction.dot(result.motion);
+ if (result.motion.length() > margin) {
+ result.motion = up_direction * up_direction.dot(result.motion);
+ } else {
+ result.motion = Vector2();
+ }
}
-
} else {
apply = false;
}
diff --git a/scene/3d/physics_body_3d.cpp b/scene/3d/physics_body_3d.cpp
index e7482d35e7..4568145458 100644
--- a/scene/3d/physics_body_3d.cpp
+++ b/scene/3d/physics_body_3d.cpp
@@ -125,11 +125,11 @@ bool PhysicsBody3D::move_and_collide(const Vector3 &p_motion, bool p_infinite_in
// Restore direction of motion to be along original motion,
// in order to avoid sliding due to recovery,
// but only if collision depth is low enough to avoid tunneling.
- real_t motion_length = p_motion.length();
- if (motion_length > CMP_EPSILON) {
- real_t precision = CMP_EPSILON;
+ if (p_cancel_sliding) {
+ real_t motion_length = p_motion.length();
+ real_t precision = 0.001;
- if (colliding && p_cancel_sliding) {
+ if (colliding) {
// Can't just use margin as a threshold because collision depth is calculated on unsafe motion,
// so even in normal resting cases the depth can be a bit more than the margin.
precision += motion_length * (r_result.collision_unsafe_fraction - r_result.collision_safe_fraction);
@@ -140,16 +140,21 @@ bool PhysicsBody3D::move_and_collide(const Vector3 &p_motion, bool p_infinite_in
}
if (p_cancel_sliding) {
+ // When motion is null, recovery is the resulting motion.
+ Vector3 motion_normal;
+ if (motion_length > CMP_EPSILON) {
+ motion_normal = p_motion / motion_length;
+ }
+
// Check depth of recovery.
- Vector3 motion_normal = p_motion / motion_length;
- real_t dot = r_result.motion.dot(motion_normal);
- Vector3 recovery = r_result.motion - motion_normal * dot;
+ real_t projected_length = r_result.motion.dot(motion_normal);
+ Vector3 recovery = r_result.motion - motion_normal * projected_length;
real_t recovery_length = recovery.length();
// Fixes cases where canceling slide causes the motion to go too deep into the ground,
- // Becauses we're only taking rest information into account and not general recovery.
+ // because we're only taking rest information into account and not general recovery.
if (recovery_length < (real_t)p_margin + precision) {
// Apply adjustment to motion.
- r_result.motion = motion_normal * dot;
+ r_result.motion = motion_normal * projected_length;
r_result.remainder = p_motion - r_result.motion;
}
}
@@ -1012,8 +1017,9 @@ void CharacterBody3D::move_and_slide() {
floor_normal = Vector3();
floor_velocity = Vector3();
- // No sliding on first attempt to keep motion stable when possible.
- bool sliding_enabled = false;
+ // No sliding on first attempt to keep floor motion stable when possible,
+ // when stop on slope is enabled.
+ bool sliding_enabled = !stop_on_slope;
for (int iteration = 0; iteration < max_slides; ++iteration) {
PhysicsServer3D::MotionResult result;
bool found_collision = false;
@@ -1052,7 +1058,11 @@ void CharacterBody3D::move_and_slide() {
if (stop_on_slope) {
if ((body_velocity_normal + up_direction).length() < 0.01) {
Transform3D gt = get_global_transform();
- gt.origin -= result.motion.slide(up_direction);
+ if (result.motion.length() > margin) {
+ gt.origin -= result.motion.slide(up_direction);
+ } else {
+ gt.origin -= result.motion;
+ }
set_global_transform(gt);
linear_velocity = Vector3();
return;
@@ -1094,7 +1104,7 @@ void CharacterBody3D::move_and_slide() {
// Apply snap.
Transform3D gt = get_global_transform();
PhysicsServer3D::MotionResult result;
- if (move_and_collide(snap, infinite_inertia, result, margin, false, true)) {
+ if (move_and_collide(snap, infinite_inertia, result, margin, false, true, false)) {
bool apply = true;
if (up_direction != Vector3()) {
if (Math::acos(result.collision_normal.dot(up_direction)) <= floor_max_angle + FLOOR_ANGLE_THRESHOLD) {
@@ -1105,7 +1115,11 @@ void CharacterBody3D::move_and_slide() {
if (stop_on_slope) {
// move and collide may stray the object a bit because of pre un-stucking,
// so only ensure that motion happens on floor direction in this case.
- result.motion = result.motion.project(up_direction);
+ if (result.motion.length() > margin) {
+ result.motion = result.motion.project(up_direction);
+ } else {
+ result.motion = Vector3();
+ }
}
} else {
apply = false; //snapped with floor direction, but did not snap to a floor, do not snap.
diff --git a/servers/physics_2d/space_2d_sw.cpp b/servers/physics_2d/space_2d_sw.cpp
index 4b123b2d46..cbde7144b7 100644
--- a/servers/physics_2d/space_2d_sw.cpp
+++ b/servers/physics_2d/space_2d_sw.cpp
@@ -283,22 +283,38 @@ bool PhysicsDirectSpaceState2DSW::cast_motion(const RID &p_shape, const Transfor
continue;
}
- //just do kinematic solving
- real_t low = 0;
- real_t hi = 1;
Vector2 mnormal = p_motion.normalized();
+ //just do kinematic solving
+ real_t low = 0.0;
+ real_t hi = 1.0;
+ real_t fraction_coeff = 0.5;
for (int j = 0; j < 8; j++) { //steps should be customizable..
-
- real_t ofs = (low + hi) * 0.5;
+ real_t fraction = low + (hi - low) * fraction_coeff;
Vector2 sep = mnormal; //important optimization for this to work fast enough
- bool collided = CollisionSolver2DSW::solve(shape, p_xform, p_motion * ofs, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), nullptr, nullptr, &sep, p_margin);
+ bool collided = CollisionSolver2DSW::solve(shape, p_xform, p_motion * fraction, col_obj->get_shape(shape_idx), col_obj_xform, Vector2(), nullptr, nullptr, &sep, p_margin);
if (collided) {
- hi = ofs;
+ hi = fraction;
+ if ((j == 0) || (low > 0.0)) { // Did it not collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When colliding again, converge faster towards low fraction
+ // for more accurate results with long motions that collide near the start.
+ fraction_coeff = 0.25;
+ }
} else {
- low = ofs;
+ low = fraction;
+ if ((j == 0) || (hi < 1.0)) { // Did it collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When not colliding again, converge faster towards high fraction
+ // for more accurate results with long motions that collide near the end.
+ fraction_coeff = 0.75;
+ }
}
}
@@ -957,20 +973,35 @@ bool Space2DSW::test_body_motion(Body2DSW *p_body, const Transform2D &p_from, co
}
//just do kinematic solving
- real_t low = 0;
- real_t hi = 1;
-
+ real_t low = 0.0;
+ real_t hi = 1.0;
+ real_t fraction_coeff = 0.5;
for (int k = 0; k < 8; k++) { //steps should be customizable..
-
- real_t ofs = (low + hi) * 0.5;
+ real_t fraction = low + (hi - low) * fraction_coeff;
Vector2 sep = motion_normal; //important optimization for this to work fast enough
- bool collided = CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion * ofs, against_shape, col_obj_shape_xform, Vector2(), nullptr, nullptr, &sep, 0);
+ bool collided = CollisionSolver2DSW::solve(body_shape, body_shape_xform, p_motion * fraction, against_shape, col_obj_shape_xform, Vector2(), nullptr, nullptr, &sep, 0);
if (collided) {
- hi = ofs;
+ hi = fraction;
+ if ((k == 0) || (low > 0.0)) { // Did it not collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When colliding again, converge faster towards low fraction
+ // for more accurate results with long motions that collide near the start.
+ fraction_coeff = 0.25;
+ }
} else {
- low = ofs;
+ low = fraction;
+ if ((k == 0) || (hi < 1.0)) { // Did it collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When not colliding again, converge faster towards high fraction
+ // for more accurate results with long motions that collide near the end.
+ fraction_coeff = 0.75;
+ }
}
}
diff --git a/servers/physics_3d/space_3d_sw.cpp b/servers/physics_3d/space_3d_sw.cpp
index eff480396d..cdae744ead 100644
--- a/servers/physics_3d/space_3d_sw.cpp
+++ b/servers/physics_3d/space_3d_sw.cpp
@@ -255,6 +255,8 @@ bool PhysicsDirectSpaceState3DSW::cast_motion(const RID &p_shape, const Transfor
bool best_first = true;
+ Vector3 motion_normal = p_motion.normalized();
+
Vector3 closest_A, closest_B;
for (int i = 0; i < amount; i++) {
@@ -270,7 +272,7 @@ bool PhysicsDirectSpaceState3DSW::cast_motion(const RID &p_shape, const Transfor
int shape_idx = space->intersection_query_subindex_results[i];
Vector3 point_A, point_B;
- Vector3 sep_axis = p_motion.normalized();
+ Vector3 sep_axis = motion_normal;
Transform3D col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx);
//test initial overlap, does it collide if going all the way?
@@ -279,35 +281,47 @@ bool PhysicsDirectSpaceState3DSW::cast_motion(const RID &p_shape, const Transfor
}
//test initial overlap, ignore objects it's inside of.
- sep_axis = p_motion.normalized();
+ sep_axis = motion_normal;
if (!CollisionSolver3DSW::solve_distance(shape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) {
continue;
}
//just do kinematic solving
- real_t low = 0;
- real_t hi = 1;
- Vector3 mnormal = p_motion.normalized();
-
+ real_t low = 0.0;
+ real_t hi = 1.0;
+ real_t fraction_coeff = 0.5;
for (int j = 0; j < 8; j++) { //steps should be customizable..
+ real_t fraction = low + (hi - low) * fraction_coeff;
- real_t ofs = (low + hi) * 0.5;
-
- Vector3 sep = mnormal; //important optimization for this to work fast enough
-
- mshape.motion = xform_inv.basis.xform(p_motion * ofs);
+ mshape.motion = xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
-
+ Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolver3DSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, aabb, &sep);
if (collided) {
- hi = ofs;
+ hi = fraction;
+ if ((j == 0) || (low > 0.0)) { // Did it not collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When colliding again, converge faster towards low fraction
+ // for more accurate results with long motions that collide near the start.
+ fraction_coeff = 0.25;
+ }
} else {
point_A = lA;
point_B = lB;
- low = ofs;
+ low = fraction;
+ if ((j == 0) || (hi < 1.0)) { // Did it collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When not colliding again, converge faster towards high fraction
+ // for more accurate results with long motions that collide near the end.
+ fraction_coeff = 0.75;
+ }
}
}
@@ -902,27 +916,40 @@ bool Space3DSW::test_body_motion(Body3DSW *p_body, const Transform3D &p_from, co
}
//just do kinematic solving
- real_t low = 0;
- real_t hi = 1;
-
+ real_t low = 0.0;
+ real_t hi = 1.0;
+ real_t fraction_coeff = 0.5;
for (int k = 0; k < 8; k++) { //steps should be customizable..
+ real_t fraction = low + (hi - low) * fraction_coeff;
- real_t ofs = (low + hi) * 0.5;
-
- Vector3 sep = motion_normal; //important optimization for this to work fast enough
-
- mshape.motion = body_shape_xform_inv.basis.xform(p_motion * ofs);
+ mshape.motion = body_shape_xform_inv.basis.xform(p_motion * fraction);
Vector3 lA, lB;
-
+ Vector3 sep = motion_normal; //important optimization for this to work fast enough
bool collided = !CollisionSolver3DSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, motion_aabb, &sep);
if (collided) {
- hi = ofs;
+ hi = fraction;
+ if ((k == 0) || (low > 0.0)) { // Did it not collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When colliding again, converge faster towards low fraction
+ // for more accurate results with long motions that collide near the start.
+ fraction_coeff = 0.25;
+ }
} else {
point_A = lA;
point_B = lB;
- low = ofs;
+ low = fraction;
+ if ((k == 0) || (hi < 1.0)) { // Did it collide before?
+ // When alternating or first iteration, use dichotomy.
+ fraction_coeff = 0.5;
+ } else {
+ // When not colliding again, converge faster towards high fraction
+ // for more accurate results with long motions that collide near the end.
+ fraction_coeff = 0.75;
+ }
}
}