summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorWilliam Deurwaarder <william.git@xs4all.nl>2021-11-12 17:56:09 +0100
committerWilliam Deurwaarder <william.git@xs4all.nl>2021-11-19 15:29:43 +0100
commit2ee77f6f057351e5d6647cfc26f4d2c8eea7b01b (patch)
treefdde3b148fa812faf27b5c44b74696f4363d0f8b
parent42f8bfaff0dc5a94ca351b1eaadc42cb95655b87 (diff)
GPULightmapper: better algorithm to generate rays for indirect lighting
Previous algorithm used an algorithm to generate rays that was not completely random. This caused artifacts when large lighmap textures were used. The new algorithm creates better rays and by that prevents artifacts.
-rw-r--r--modules/lightmapper_rd/lm_compute.glsl46
1 files changed, 34 insertions, 12 deletions
diff --git a/modules/lightmapper_rd/lm_compute.glsl b/modules/lightmapper_rd/lm_compute.glsl
index 158cd960c4..7bb8346c47 100644
--- a/modules/lightmapper_rd/lm_compute.glsl
+++ b/modules/lightmapper_rd/lm_compute.glsl
@@ -235,19 +235,39 @@ uint trace_ray(vec3 p_from, vec3 p_to
return RAY_MISS;
}
+// https://www.reedbeta.com/blog/hash-functions-for-gpu-rendering/
+uint hash(uint value) {
+ uint state = value * 747796405u + 2891336453u;
+ uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
+ return (word >> 22u) ^ word;
+}
+
+uint random_seed(ivec3 seed) {
+ return hash(seed.x ^ hash(seed.y ^ hash(seed.z)));
+}
+
+// generates a random value in range [0.0, 1.0)
+float randomize(inout uint value) {
+ value = hash(value);
+ return float(value / 4294967296.0);
+}
+
const float PI = 3.14159265f;
-const float GOLDEN_ANGLE = PI * (3.0 - sqrt(5.0));
-
-vec3 vogel_hemisphere(uint p_index, uint p_count, float p_offset) {
- float r = sqrt(float(p_index) + 0.5f) / sqrt(float(p_count));
- float theta = float(p_index) * GOLDEN_ANGLE + p_offset;
- float y = cos(r * PI * 0.5);
- float l = sin(r * PI * 0.5);
- return vec3(l * cos(theta), l * sin(theta), y);
+
+// http://www.realtimerendering.com/raytracinggems/unofficial_RayTracingGems_v1.4.pdf (chapter 15)
+vec3 generate_hemisphere_uniform_direction(inout uint noise) {
+ float noise1 = randomize(noise);
+ float noise2 = randomize(noise) * 2.0 * PI;
+
+ float factor = sqrt(1 - (noise1 * noise1));
+ return vec3(factor * cos(noise2), factor * sin(noise2), noise1);
}
-float quick_hash(vec2 pos) {
- return fract(sin(dot(pos * 19.19, vec2(49.5791, 97.413))) * 49831.189237);
+vec3 generate_hemisphere_cosine_weighted_direction(inout uint noise) {
+ float noise1 = randomize(noise);
+ float noise2 = randomize(noise) * 2.0 * PI;
+
+ return vec3(sqrt(noise1) * cos(noise2), sqrt(noise1) * sin(noise2), sqrt(1.0 - noise1));
}
float get_omni_attenuation(float distance, float inv_range, float decay) {
@@ -404,8 +424,9 @@ void main() {
#endif
vec3 light_average = vec3(0.0);
float active_rays = 0.0;
+ uint noise = random_seed(ivec3(params.ray_from, atlas_pos));
for (uint i = params.ray_from; i < params.ray_to; i++) {
- vec3 ray_dir = normal_mat * vogel_hemisphere(i, params.ray_count, quick_hash(vec2(atlas_pos)));
+ vec3 ray_dir = normal_mat * generate_hemisphere_cosine_weighted_direction(noise);
uint tidx;
vec3 barycentric;
@@ -550,8 +571,9 @@ void main() {
vec4(0.0),
vec4(0.0));
+ uint noise = random_seed(ivec3(params.ray_from, probe_index, 49502741 /* some prime */));
for (uint i = params.ray_from; i < params.ray_to; i++) {
- vec3 ray_dir = vogel_hemisphere(i, params.ray_count, quick_hash(vec2(float(probe_index), 0.0)));
+ vec3 ray_dir = generate_hemisphere_uniform_direction(noise);
if (bool(i & 1)) {
//throw to both sides, so alternate them
ray_dir.z *= -1.0;